ePadLlink

ePad-vision SDK for Chrome & Firefox
Integration Guide

Copyright © 2019 ePadLink

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

Table of Contents

1.0 = INTrOTUCTION .o iiieeeeeeeee et 6
2.0 = Overview and ArChitECTUIEuviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee et 6
2.1 — CRFOME BIOWSET ... 8

Native Messaging HOSt APPlICAtiONocvvviiiiiiiiei e 8

Chrome EXtENSION/WED PAJEuuuuiiiiiiiiiiiiiiiiiiiiitieieieieieseeeeeaereeererereeeserersrersrersrarersrsressrersrsrnrnrnrnnnnnnes 8
2.2 = FIrEIOX BIOWSET ... 9

JS-Ctypes Library .o 9

Firefox EXtenSion/Webh Page..........ooovviiiiiiiii 9
3.0 = KBY FRALUIES ..ottt e e e e et e e et e e e e e a e e aan s 10
4.0 — Operating Systems and Browsers Supportedccccvvvvieiiie e 10
5.0 — Installation of ePad-ViSion SDK............uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiie. 11
5.1 — CRTOME e 11
5.2 = FIrBIOX e 11
6.0 — Components of the ePad-vision SDKcccccooiiiiiiiiiiie e 12
0 R 1 o1] o = T PSSR 12
L T £ {0) GO PSSP 12

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

Table of Contents

7.0 — Chrome INtEGratioNccooiiiiiiiie e e e e e e e e e et eeeeeeeeeennes 13
7.1 — Creating an EXIENSIONooiiiiiiie e e et e e e e e e s s e e e e e s eaat e s aeaeeeanrees 13
7.2— EXtENSION INSTAIALIONciiiiiiiiiiee e 14
7.3 — Native Messaging Host INStallation..............oooooii 14

WWINAOWS .ottt ettt e et e oo e et e e ekt e e e e s et e e ekt e e e s aE et e e e nr e e e e e s re e e e e nnre e e e e nnnneeeennes 15

T PPN 16
7.4 — Integrating the Native Messaging Host into Applications ..., 16
7.5 — Launching the Native Messaging HOSEcoii i e 17
7.6 — €Pad-ViSION DEVICE ACCESSceiiieeeeeeee e 17
8.0 — FIrefOX INTEGIAtIONuuiiiiiiiiiiiiiiiiieeie bbb enneee 19
8.1 — Creating an EXIENSIONcccoiiiiiiiee e e e e e et e s e e e e e e e ear e e e eaaaaaarne 19

Major CompPoNeNnts Of EXTENSIONvuiiiiiiiiii ettt e e sbaeee e 19
8.2 — EXteNSION INSLAIALIONcoiiiiiiiiiie e 21
8.3 — Invocation of Native Library from EXtENSIONcoooviiiiiiiiiiie 21
8.4 — Invoking the Extension from Webh Page...... oo 23
8.5 — Pad-VISION DEVICE ACCESScceiiiee et 23

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

Table of Contents

9.0 — €Pad-ViSiON SDK AP ...t 25
S IR @ o= o I @ o] 1= Tox 1o o [F PSPPSR 25
9.2 — ClOSE CONNECLIONuttiiieee e ettt e e e et e e e e e e s e e e e e e e e e e eeeeees 26
9.3 — Create Screen (NO SIGNATUIE)ccooeeeeeeeeeeeee e 26
9.4 — Create Screen (SIgNature CaptUrE)uuuieirieeeeiiieiiiee e e e e e e e eeertaa e s e e e e e eeearraaa e e aeaeeeannnns 28
9.5 = PINPA SCIEEN ... 29
9.6 — RETESN SCIEEIN ...ttt e e e e e e s 30
9.7 — Signature Event Polling (FIrefoX ONIY)uuuiiiiioiee e 31
9.8 — Widget Event Polling (FirefoX ONlY)coooiiiioi 32
9.9 — Signature Event (Chrome ONIY)o e et e e e e e eaeens 33
9.10 — Widget Event (Chrome ONIY)......oooe oo 33
10.0 — SIgNature DIraWinNgccooeiiiiiiiiiiiiieeeeeeeeee e 34
11.0 — Instructions to Run Sample Application.......ccccccvvviiiiiiiiiiiiiiiiiiiiieeeeee 34
11.1 — Chrome Extension Installation and Configurationcc.ooeeeiiiiiiiiin e 34

WINAOWS NG LINUX 1etiiiiiiieeiiieie ettt e et e et e e et e e e s ab et e e e an bt e e e nnbe e e e e nnneeeeennes 34

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

Table of Contents

11.2 — Chrome Native Host Installation and Configurationccccoeevviiiiii e, 35
WWVIMAOWS ettt h e ookt e ook b et e oo ek b et e ook b et e e e aa ket e e e mb b e e e e ambe e e e e anbe e e e e anbreeeeannne 35
N PP 35

11.3 — Firefox Extension INStallation.............cccuiiiiiiiiiii e 36
WINAOWS GNG LINUX 1eiiiiiiiiieiiieee ettt e e st e e e st e e st e e e anre e e e e anne e e e e nnneeeennnes 36

11.4 — RUNNing Web Page SAmPIEouuuiiii it e e 36

11.5 — SAMPIE SOUICE COUE ... 36

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

1.0 — Introduction

The ePad-vision SDK for Chrome & Firefox offers a mechanism and platform for
developers and integrators to capture handwritten signatures securely using ePadLink
ePad-vision signature pads for web applications running in the Chrome and Firefox
browsers. In addition to signature capture capabilities, the SDK offers the ability to create
custom screens with widgets (text, check box, radio button, and push button).

This SDK package does not include the ePad-vision driver, please go to
epadsupport.com to download the UlI11.6 or later universal installer for Windows or
ePad-2.3 driver for Linux system.

2.0 — Overview and Architecture

The diagram below shows the high-level overview of the solution with critical
components involved.

Host applications running in Chrome and Firefox browsers interact with the SDK 32-bit
native components via extensions. The SDK interacts with the ePad-vision device via
standard ePad-vision 32-bit drivers.

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

Firefox Extension
(HTML and

Chrome Extension

(HTML and

JavaScript) JavaScript)

Standard Standard Standard
Output Input method calls
Message Message
ePad-vision SDK Native ePad-vision SDK JS-Ctypes
Messaging Host Application Library

(Standard Input Output
messaging support)

! !

ePad-vision Drivers J

|

ePad-
vision pad

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

2.1 — Chrome Browser

Chrome supports access to local devices (signature pads) using native applications
(Native Messaging Hosts) and standard extensions. Web pages can interact with native
applications via extensions.

Native Messaging Host Application

The Native Messaging Host is the core component of the SDK and acts as a bridge
between the browser and the actual signature capture device. It will have all the input
and output interfaces implemented as Standard Input and Output streams as required
by the Google Native Messaging API framework. The Native Messaging Host
Application processes the input text message from the Chrome browser and executes
the request asynchronously, and when the task is complete sends back the status or
output data (signature points and widget events) as a native output text message. It will
host all the functions for capture of signatures and creation of custom screens on the
ePad-vision device.

Chrome runs this application in a separate process and launches it through Connect
APIs and sends a notification back to the Chrome Extension when the application is
ended by the user.

Chrome Extension/Web Page

Extensions are the HTML, JavaScript, and CSS based applications. The extensions use
JavaScript based Native Messaging APIs to launch and communicate with the Topaz
Native Messaging Host application for signature capture and other relevant features.
The extension listens for the output messages from the Native Messaging Host
Application and processes them accordingly. Native Messaging has a Connect API to
launch the application and a Disconnect event to let the web page know about
termination of the native host application. Using Connect and Disconnect, the life cycle
of the native host application can be controlled.

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

2.2 — Firefox Browser

Firefox supports access to local devices (signature pads) using JS-Ctypes framework.
The JS-Ctypes framework allows Firefox extensions to invoke native C/C++ libraries.

JS-Ctypes Library

The JS-Ctype library is the core component of the SDK and acts as a bridge between
the browser and the actual signature capture device. It will have all the methods
implemented as required by the Firefox JS-Ctypes API framework. The library takes all
the input data as JSON string messages (same as Chrome NMH input messages) from
the Firefox browser and executes the request synchronously, and when the task is
complete sends back the status method return parameter.

Firefox Extension/Web Page

Extensions are the HTML, JavaScript, and CSS based applications. The extensions use
JavaScript APIs to launch and communicate with the Topaz JS-Ctypes library for
signature capture and other relevant features. The extension polls for the signature and
widget events from the library and processes them accordingly.

The host application will host all the functions for capture of signatures and creation of
custom screens on the ePad-vision device. Firefox runs this application in the same
process.

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

3.0— Key Features
The ePad-vision SDK supports the following features:
e Open and close connection with the ePad-vision device.
e Creation of custom screens.
e Create widgets on screen (Text, Radio button, Check button, and Push buttons).
e Report signature points and widget events (like widget clicked, state changed).

e Creation of PIN pad for password and PIN capture.

4.0 — Operating Systems and Browsers Supported
The ePad-vision SDK can be integrated into client web applications running on

Operating Systems:
e Windows: Windows 7 and up, Windows 8 and up tablets
e Linux: Ubuntu 12, Fedora 20 and above

Browsers:
e Chrome browsers version 29 and above (both 32 bit and 64 bit).
e Firefox browser 30 and above (32 bit only)

The samples have been thoroughly tested in the version mentioned above of Chrome
and Firefox browsers. Hence, it is recommended that you install the latest version of the
Chrome and Firefox browser.

Device Drivers

e Windows: Universal Installer 11.6 or later 32 bit or 64 bit based on browser type
(32 or 64 bit)
e Linux: ePad 2.3 32bit version.

10

5.0 -

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

Installation of ePad-vision SDK

5.1- Chrome

Download the Chrome signature capture SDK for Windows at:
www.epadsupport.com/getlatest/ePad-visionChromeSDK.msi.

Download the Chrome signature capture SDK for Linux at:
www.epadsupport.com/getlatest/ePadvision SDKPkg_Linux_ch.gz.

For Windows, run the ePad-visionChromeSDK.msi file to install the SDK.

The default install directory will be at
where will be referenced as <SDK location> within this document.

For Linux, download the ePadvision_SDKPkg_Linux_ch.gz file. Use “tar xzvf
ePadvision_SDKPkg_Linux_ch.gz” from aterminal. It will uncompress and untar
the files in the zip file to the current folder. Use “sudo sh install_chrome.sh” to
place the SDK under where will be
referenced as <SDK location> within this document.

5.2— Firefox

Download the Firefox signature capture SDK for Windows at:
www.epadsupport.com/getlatest/ePad-visionFirefoxSDK.msi.

Download the Firefox signature capture SDK for Linux at:
www.epadsupport.com/getlatest/ePadvision SDKPkg_Linux_ff.gz.

For Windows, run the ePad-visionFirefoxSDK.msi file to install the SDK.

The default install directory will be at
where will be referenced as <SDK location> within this document

For Linux, download the ePadvision_SDKPkg_Linux_ff.gz file. Use “tar xzvf
ePadvision_SDKPkg_Linux_ff.gz” from a terminal. It will uncompress and untar
the files in the zip file to the current folder. Use “sudo sh install_firefox.sh” to
place the SDK under where will be referenced
as <SDK location> within this document.

11

http://www.epadsupport.com/getlatest/ePad-visionChromeSDK.msi
http://www.epadsupport.com/getlatest/ePadvision_SDKPkg_Linux_ch.gz
http://www.epadsupport.com/getlatest/ePad-visionFirefoxSDK.msi
http://www.epadsupport.com/getlatest/ePadvision_SDKPkg_Linux_ff.gz

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

6.0 — Components of the ePad-vision SDK

Extensions provided in the SDK are provided as a sample implementation and they can
be used as a reference for developing extensions or can be used as is.

6.1 — Chrome

The major component of the ePad-vision Chrome SDK is the Native Messaging
Executable.

For Windows:
e X86/Chrome.ePad-visionSDK.exe for 32 bit Chrome running on both 32 and 64
bit OS.
e X64/Chrome.ePad-visionSDK.exe for 64 bit Chrome Running on Windows 64 bit
os.

For Linux:
e ePadvisionNMHost.exe
6.2 — Firefox
The major component of the ePad-vision Firefox SDK is the Native library. The
PinPadWork, an exe, is for the Linux platform only, will be executed by the

libFireFoxExtension.so.

For Windows
e FireFoxExtension.dll

For Linux
e libFireFoxExtension.so
e PinPadWork, an executable that will be launched by the libFireFoxExtension.so

Note: Microsoft component .Net Framework 3.5 should be available in the end user
machine for the SDK to work properly in the Chrome and Firefox Browser.

12

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

7.0 — Chrome Integration

The Native Messaging Host (NMH) is the critical component of the ePad-vision SDK
and Chrome allows access to NMH in web pages via extensions. Integration into a web
page requires a background extension that acts as a bridge between the web page and
the native messaging host application. The following sections explain installation of
NMH, writing extensions for NMH access, installation of extension, and API access:

7.1 - Creating an Extension

The first step of the extension is to write the manifest file. Below is the sample
manifest.json file of the ChromeExtension of the SDK.

Parameter Description

Name Name of the extension

Version Version of the extension

Manifest_version Version of the manifest.

Background This section specifies the information about the JS file which has the

reference of the extension background JS file. This file will have all the code
for communication with Chrome Native Messaging Host.

Persistent specifies if the extension background js is an event page or

not. Specifying false will make the JavaScript page load when the specific
event happens. We suggest you to keep this the same.

Content_Scripts

This section has information related to the script file which gets injected into
the web page. Content script code registers for an event which web page
raises, and when the event is raised, it invokes the background script for NMH
communication.

The matches attribute specifies the application URLs into which the content
script should be injected.
Js: content java script file.

Permissions

List of permissions the extension requires for communicating with the
device.

13

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

Once the manifest file creation is completed, the next step is to create the files
referenced in the manifest file:

e Background.js JavaScript file which communicates with NMH for capturing
signature and interaction with the ePad-vision device.

e content.js — Content script file, gets injected to web pages matching URLs
mentioned in manifest file.

If your implementation of the extension differs from that used in the sample above, you
should create your own files (.js, .htm, etc. as appropriate) that provide the details of the
files named in the manifest file.

7.2— Extension Installation

e Open the Chrome browser, type and navigate to the URL chrome://extensions/ or
else go to Settings - Extensions.

¢ Make sure Developer Mode is selected and then click Load unpacked extension
button.

e Browse to Extension folder (<SDK location>\Sample\ChromeExtension) where
the extension’s manifest.json file is located and click OK.

e Confirm and accept the permissions dialog displayed.

¢ Once the installation is complete, take a note of the ID of the extension. This
should be copied into the NMH manifest file.

7.3 — Native Messaging Host Installation

The first step of the installation is to register the native messaging host on the
client/developer desktop. For registering a native messaging host, the application must
install a manifest file that defines the native messaging host configuration. Below is the
default com.topaz.epadvision.win.json, distributed along with the SDK and it can be
used. Some of the parameters of the file will be changed based on the target machine.

14

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

Parameter
Name

Description
Path

Type

allowed_origins

Description

Name of the native messaging host. Clients pass this string to the Chrome NMH
connect call and launch the host. Keep it the same as above.

Short application description. Keep it the same as above.

Path to the native messaging host binary Chrome.ePad-visionSDK.exe. This
should be changed based on location where the SDK is installed/copied. If the
executable and the manifest file are in same location, the name itself will do. If
absolute or relative paths are specified, please make sure to enter ‘\\' as the
folder separator. Adjust the paths as needed for Windows and Linux operating
systems.

Type of the interface used to communicate with the native messaging host.
Currently there is only one possible value for this parameter: stdio. It indicates
that Chrome should use stdin and stdout to communicate with

the host.

List of extensions that should have access to the native messaging host.
Normally specifies the extensions from which the host can be accessed.
Supports specifying multiple extension IDs. The default manifest file shipped
with the SDK contains the IDs of the sample extensions that are shipped with
the SDK. These should be changed appropriately if custom extensions are
developed. Extension ID can be grabbed from

Chrome://[Extensions page once the extension is deployed. Use the extension
ID copied in Extension installation section.

Once the editing of the manifest file is completed, the next step would be to register the
host application with the Chrome Browser.

Windows

For 32 bit and 64 bit operating systems running respective Chrome browsers (32 and 64
bit versions) the following registry key should be created. The manifest file can be
located anywhere in the file system.

Create a registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Google\Chrome\NativeMessagingHosts\
com.topaz.epadvision.win

For 64 bit operating systems running 32 bit Chrome the following key should be created

in the registry.

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Google\Chrome\NativeMessagi
ngHosts\ com.topaz.epadvision.win

Once the key is created, set the default value of that key to the full path of the manifest

file.

15

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide
Now the host application is ready for access from the specified extensions.

For 32 bit Chrome it is recommended to enter the X86 version of manifest file path
located under:
<SDK_location>\SDK\ Chrome-NativeMessagingHost\Windows\X86\manifest.json

For 64 bit Chrome it is recommended to enter the X64 version of manifest file path
located under:
<SDK_location>\SDK\ Chrome-NativeMessagingHost\Windows\X64\manifest.json

Linux

Below is the Linux version of com.topaz.epadvision.win.json, distributed along with the
SDK and it can be used. Some of the parameters of the file will be changed based on
the target machine.

The path field is set to the location where the ePadvisionNMHost.exe located.

7.4 — Integrating the Native Messaging Host into Applications

The native messaging host can be integrated directly into an extension or web page.
Integration into a web page requires a background extension that acts as a bridge
between the web page and the native messaging host application.

All the APIs required for launching the host, sending messages to the host, and
receiving messages from the host are available in Chrome JavaScript.

Note: The Chrome Native Messaging related JavaScript APIs cannot be accessed directly
from a web page. For security reasons, Chrome allows only an extension to access the
native messaging hosts.

16

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

7.5 - Launching the Native Messaging Host

Within the extension JavaScript, the following code can be used to launch the native
messaging host application.

7.6 — ePad-vision Device Access

The ePad-vision SDK for Chrome is implemented as a Native Messaging Host. As the
Google Native Messaging API framework mandates using Standard Input and Output
streams for communication between the Chrome and the native application, only text
data can be exchanged between the applications. The Input messages trigger
communication with device, and the input message itself contains all the required data
as payload.

The Output message payload contains the status of the transaction and also signature
points, widget events, etc.

The Native Messaging framework mandates that the input and output messages should
be in JSON format. Native messaging allows you to send multiple attributes as part of the
JSON string/message. The format of the JISON message is:

{text: valuel, textl: value2}

where ‘text’ and ‘text1’ are the names of the JSON parameters.

The valueland value2 entries are the values in JSON format. These will be used by the
native host application to interpret the signature capture input and process it
accordingly. There are no practical restrictions on the number of parameters, names of
the parameters, or the length of the data any parameter can contain.

Sending input messages to the Native Messaging host.

17

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

Chrome API postMessage should be used to send input messages to the Native
Messaging Host

Receiving output messages

Once an Input message is sent, the Native Messaging Host processes the request and
sends back the status asynchronously to the extension by firing the callback function
registered.

18

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

8.0 — Firefox Integration

JS-Ctypes native library (FireFoxExtension.dll or libFireFoxExtension.so) is the critical
core component of the ePad-vision SDK and Firefox allows access to the native library
in web pages via extensions.

Integration into a web page requires a background extension that acts as a bridge
between the web page and the native messaging host application.

Normally the native library can be packaged and installed along with the extension.

8.1 — Creating an Extension

A Firefox Extension is normally implemented as a JavaScript file and coupled with a few
other supporting files qualifies to be an extension for Firefox

Major Components of Extension

e chrome.manifest — Registers the extension with engine.
e install.rdf — Information about the extension
e content/FireFoxJSON.js — core JavaScript file

Refer to SDK’s Sample/FirefoxExtension folder for further info on structure and contents
of the extension.

Here is a typical directory structure of the extension:

install.rdf

chrome.manifest
\locale\en-us\translations.dtd
\content\FireFoxJSON.js
\content\FireFoxJSON.xul
\default\preferences\prefs.js

19

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

e |nstall.rdf :

Parameter Description

em:id Email Id of the developer

em:name Extension name.

em:version Extension version.

em:type "2" declares that it is installing as an extension.
em:creator Extension creator

em:description

Extension description.

em:homePageURL

URL of the company providing extension.

em:unpack

Always true.

Firefox application ID

{ec8030f7-c20a-464f-9b0e-13a3a9e97384}

em:minVersion

Minimum version of the Firefox that supports this extension,
e.g. 1.5

em:max\Version

Maximum or recent version of Firefox that supports this
extension,

e.g. 4.0

20

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.mozilla.org/2004/em-rdf
mailto:support@topazsystems.com
http://www.topazsystems.com/

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

e Chrome.manifest
Meta information about the extension

e Extension.xul
Has information about the core s of the Extension

8.2 — Extension Installation

Extensions are packaged and distributed in ZIP files with the XPI file extension.
Zip all the files in the folder.
Add .xpi extension for the zipped folder.

1. Open the Mozilla Firefox browser and navigate to Tools > Add-ons > Extension
tab.

2. Click on “Tools for all add-ons” and select “install Add-on from file...” option.

3. Browse for .xpi file or .zip file and click on Install Now button.

4. After installation, restart the browser.

8.3 — Invocation of Native Library from Extension

The core component of the ePad-vision SDK is developed as a native library and
Firefox uses JS- Ctypes framework for invocation and marshalling and un-marshalling
data between the JavaScript and native library.

21

http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

The first step is to import the JS-Ctypes and other required JavaScript modules (jsm)
files. Then define the path of the native library. As the library is installed along with the
extension, it can be referenced (relative to the extension) as shown below.

Load the library.

Declare the functions of the native library for use within JavaScript

Once the functions are declared, you can invoke these functions.

22

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide
8.4 — Invoking the Extension from Web Page
Normally Firefox extension gets loaded when the Firefox browser gets started.
Extension register for a custom HTML DOM event which the web page raises when

signature needs to be captured. Extension implements the code for ePad-vision device
access within this custom event listener.

The web page uses the following code to raise the custom DOM event and start
signature capture.

8.5 — ePad-vision Device Access

ePad-vision Firefox native libraries JsonDeserialize function is invoked for accessing
different features of the SDK. The same function should be invoked with different input
messages for accessing various features like OpenConnection, CloseConnection,
CreateScreen (without Signature capture), CreateScreen (with Signature capture),
PinPad screen and Refresh screen.

The function takes the input data as a JSON message. Though regular strings and other

regular data types can be used, JSON format is used to make the Firefox implementation
consistent with Chrome APIs.

23

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

The format of the JISON message is

where ‘text’ and ‘text1’ are the names of the JSON parameters.

The valuel and value2 entries are the values in JSON format. These will be processed
by the library and interact with the ePad-vision device for signature capture and screen
creation.

var cmdOpenConn = {"command": 1 , "inking": false , "inkRegionx": 0 , "inkRegiony": 0, "inkRegionWidth": O,
"inkRegionHeight":0, "widgetLayout": "};

var

cmdOpenConnObj=JSON.stringify(cmdOpenCo

The return value from the JsonDeserialize function is again a JSON message which is
the output message described in subsequent ePad-vision SDK API section. In case of
Chrome the output message is sent as a callback to the registered function
asynchronously.

24

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

9.0 — ePad-vision SDK API

Following section described the interface call in detail.

9.1 — Open Connection

Opens the connection with the device.

Input Message

The only parameter required is command number and all other parameters can be
defaulted as shown below.

Parameter Description

Command Number identifying the command. 1 for open connection.
Inking False

inkRegionx 0

inkRegiony 0

inkRegionWidth 0

inkRegionHeight 0

widgetLayout Empty String

Output Message

Parameter Description

Command Number identifying the command. 1 for open connection.

Status True if connection is successful, false otherwise.

Message Empty in case connection is successfully opened, message in case

connection fails.

25

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

9.2 — Close Connection

Closes the connection with the device Input Message

The only parameter required is the command number, and all other parameters can be
defaulted as shown below.

Parameter Description

Command Number identifying the command. 2 for close connection.
Inking False

inkRegionx 0

inkRegiony 0

inkRegionWidth 0

inkRegionHeight 0

widgetLayout Empty String

Output Message

Parameter Description

Command Number identifying the command. 2 for close connection.

Status True if connection is successfully closed, false otherwise.

Message Empty in case connection is successfully closed message
in case connection close fails.

9.3 — Create Screen (No Signature)

Creates a screen on the ePad-vision device. Should be called after opening a
connection

Input Message

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

Parameter Description

Command Number identifying the command. 3 for screen creation.

Inking False

inkRegionx 0

inkRegiony 0

inkRegionWidth 0

inkRegionHeight 0

widgetLayout XML String containing widgets to be created on ePad vision
screen.

Here is a sample XML (Sample application of SDK uses this for widgetLayout
parameter) for creating a screen with widgets, which has text widgets, push buttons,
and radio buttons. Each widget can specify the ID, type, font details, location and size
on the device etc.

"<WidgetLayout><Widget ID=\"11\" Type=\"TEXT\" FontName=\"SAN_B_24\" BGColor=\"0000FF\"
FGColor=\"ffd700\" Width=\"450\" Height=\"100\" X=\"10\" Y=\"10\" Effect=\"NONE\" Text=\"In this
transaction, you have the option to capture your signature electronically or enter your pin or opt-out.
Please make your selection below.\" /><Widget ID=\"12\" Type=\"RADIOBUTTON\"
FontName=\"SAN_B_16\" BGColor=\"0000FF\" FGColor=\"ffd700\" Width=\"320\" Height=\"34\" X=\"50\"
Y=\"110\" Effect=\"NONE\" Text=\"Continue with signing process electronically\" GrplD=\"1\" /><Widget
ID=\"13\" Type=\"RADIOBUTTON\" FontName=\"SAN_B_16\"BGColor=\"0000FF\" FGColor=\"ffd700\"
Width=\"170\" Height=\"34\" X=\"50\" Y=\"140\" Effect=\"NONE\" Text=\"Entering pin number\" GrpID=\"1\"
/><Widget ID=\"14\" Type=\"RADIOBUTTON\" FontName=\"SAN_B_16\" BGColor=\"0000FF\"
FGColor=\"ffd700\" Width=\"150\" Height=\"34\" X=\"50\" Y=\"170\" Effect=\"NONE\" Text=\"Opt-out\"
GrpID=\"1\" /><Widget ID=\"15\" Type=\"BUTTON\" FontName=\"SAN_B_16\" BGColor=\"00FF0O0\"
FGColor=\"ffd700\" Width=\"50\" Height=\"50\" X=\"200\" Y=\"220\" Effect=\"ThreeD\" Text=\"OK\" GrpID
=\"2\" /[></WidgetLayout>"

For more information on XML refer to ePad-vision device driver documentation.
Output Message

”.n

{"command":3, status":false,”message”:” widget creation failed”}

Parameter Description

Command Number identifying the command. 3 for screen creation.

Status True if command executes successfully, false otherwise.
Message Empty in case create screen successful, message in case screen

creation fails.

The output message specifies if screen creation is successful or not. User selections or
responses (Widget Events) will be sent back as a separate output message (event),
which is explained in detailed in sections below.

27

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

9.4 — Create Screen (Signature Capture)

Creates a screen on the ePad-vision enabling users to scribble signatures on the
device. Should be called after opening a connection. For capturing signatures, inking
must be enabled and then the region on the device on which signature will be captured
should be specified.

Input Message

{"command": 3, "inking": true , "inkRegionx": 0, "inkRegiony": 0,
"inkRegionWidth": 480 , "inkRegionHeight":200, "widgetLayout": "XML String
containing widget information" }

Parameter Description

Command Number identifying the command.3 for screen creation

Inking True

inkRegionx 0

inkRegiony 0

inkRegionWidth 480 width of the ink capture region from top left

inkRegionHeight 200 height of the ink capture region from top left

widgetLayout XML String containing widgets to be created on ePad vision screen.

Here is a sample XML (Sample application of SDK uses this for widgetLayout
parameter) for creating a screen with button widgets, to accept, clear, and cancel the
signatures.

"<WidgetLayout><Widget ID=\"2\" Type=\"BUTTON\" FontName=\"SAN_B_16\" BGColor=\"00FFFF\"
FGColor=\"000000\" Width=\"80\" Height=\"34\" X=\"80\" Y=\"220\" Effect=\"ThreeD\"
Text=\"Accept\"/><Widget ID=\"3\" Type=\"BUTTON\" FontName=\"SAN_B_16\" BGColor=\"O0FFFF\"
FGColor=\"000000\" Width=\"80\" Height=\"34\" X=\"200\" Y=\"220\" Effect=\"ThreeD\"
Text=\"Clear\"/><Widget ID=\"4\" Type=\"BUTTON\" FontName=\"SAN_B_16\" BGColor=\"00FFFF\"
FGColor=\"000000\" Width=\"80\" Height=\"34\" X=\"320\" Y=\"220\" Effect=\"ThreeD\"
Text=\"Cancel\"/></WidgetLayout>"

For more information on XML refer to ePad-vision device driver documentation.

Output Message
{"command":3, status":false,”message”:” Screen creation failed”}

Parameter Description

Command Number identifying the command. 3 for open connection.

Status True if command successfully false otherwise.

Message Empty in case create screen successful, message in case screen

creation fails.

28

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

9.5 — PinPad Screen
Display PinPad screen on ePad, to capture password or PIN key.

Input Message

{"command": 4, "inking": false , "inkRegionx": 0, "inkRegiony": 0, "inkRegionWidth": 0,
"inkRegionHeight":0, "widgetLayout": "XML String containing pinpad information" }

Parameter Description

Command Number identifying the command.4 for PinPad screen.

Inking False

inkRegionx 0

inkRegiony 0

inkRegionWidth 0

inkRegionHeight 0

widgetLayout XML String containing pinpad widgets to be created on ePad vision
screen.

Here is a sample XML (Sample application of SDK uses this for widgetLayout
parameter) for creating a screen for pinpad screen.

"<PinPad><Widget ID=\"NUM_1\" FontName=\"SAN_B_20\" BGColor=\"0000FF\" FGColor=\"000000\"
Width=\"60\" Height=\"70\" X=\"275\" Y=\"2\" Effect=\"ThreeD\" /><Widget ID=\"NUM_2\"
FontName=\"SAN_B_20\" BGColor=\"0000FF\" FGColor=\"000000\" Width=\"60\" Height=\"70\" X=\"340\"
Y=\"2\" Effect=\"ThreeD\" /><Widget ID=\"NUM_3\" FontName=\"SAN_B_20\" BGColor=\"0000FF\"
FGColor=\"000000\" Width=\"60\" Height=\"70\" X=\"405\" Y=\"2\" Effect=\"ThreeD\" /><Widget
ID=\"NUM_4\"FontName=\"SAN_B_20\" BGColor=\"0000FF\" FGColor=\"000000\" Width=\"60\"
Height=\"70\" X=\"275\" Y=\"74\" Effect=\"ThreeD\" /><Widget ID=\"NUM_5\" FontName=\"SAN_B_20\"
BGColor=\"0000FF\" FGColor=\"000000\" Width=\"60\" Height=\"70\" X=\"340\" Y=\"74\" Effect=\"ThreeD\"
/><Widget ID=\"NUM_6\" FontName=\"SAN_B_20\" BGColor=\"0000FF\" FGColor=\"000000\"
Width=\"60\" Height=\"70\" X=\"405\" Y=\"74\" Effect=\"ThreeD\" /><Widget ID=\"NUM_7\"
FontName=\"SAN_B_20\" BGColor=\"0000FF\" FGColor=\"000000\" Width=\"60\" Height=\"70\" X=\"275\"
Y=\"146\" Effect=\"ThreeD\" /><Widget ID=\"NUM_8\" FontName=\"SAN_B 20\" BGColor=\"0000FF\"
FGColor=\"000000\" Width=\"60\" Height=\"70\" X=\"340\" Y=\"146\" Effect=\"ThreeD\" /><Widget
ID=\"NUM_9\" FontName=\"SAN_B_20\" BGColor=\"0000FF\" FGColor=\"000000\" Width=\"60\"
Height=\"70\" X=\"405\" Y=\"146\" Effect=\"ThreeD\" /><Widget ID=\"NUM_0\" FontName=\"SAN_B_20\"
BGColor=\"0000FF\" FGColor=\"000000\" Width=\"60\" Height=\"60\" X=\"275\" Y=\"218\"
Effect=\"ThreeD\" /><Widget ID=\"FUN_BACKSPACE\" FontName=\"SAN_B_20\" BGColor=\"0000FF\"
FGColor=\"000000\" Width=\"125\" Height=\"60\" X=\"340\" Y=\"218\" Effect=\"ThreeD\"
Text=\"Backspace\"

/><Widget ID=\"CAPTION\" FontName=\"SAN_R_16\" BGColor=\"000000\" FGColor=\"FFFFOO\"
Width=\"240\" Height=\"40\" X=\"10\" Y=\"5\" Effect=\"None\" Text=\"Use the pad on the right to enter your
pin.\" /><Widget ID=\"CONTENT\" FontName=\"SAN_B_20\" BGColor=\"0000FF\" FGColor=\"000000\"
Width=\"220\" Height=\"30\" X=\"10\" Y=\"60\" Effect=\"ThreeD\" /><Widget ID=\"FUN_SEC\"
FontName=\"SAN_R_20\" BGColor=\"9C9C9C\" FGColor=\"FFO000\" Width=\"220\" Height=\"20\"
X=\"10\" Y=\"100\" Effect=\"ThreeD\" Text=\"Hide the text\" /><Widget ID=\"FUN_OK\"

29

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

FontName=\"COM_B_24\" BGColor=\"0000FF\" FGColor=\"000000\" Width=\"100\" Height=\"60\" X=\"10\"
Y=\"150\" Effect=\"ThreeD\" Text=\"OK\"/><Widget ID=\"FUN_CANCEL\" FontName=\"COM_B_24\"
BGColor=\"0000FF\" FGColor=\"000000\" Width=\"100\" Height=\"60\" X=\"120\" Y=\"150\"
Effect=\"ThreeD\" Text=\"Cancel\"/></PinPad>";

For more information on XML refer to ePad-vision device driver documentation. The
default timeout period is 40 seconds.
Output Message

{"command":4, status":false,”message”:” Screen creation failed”}

Parameter Description

Command Number identifying the command. 4 for PinPad screen.

Status True if command successfully and user input within timeout period, false
otherwise.

Message Password or PinPad string in case operation successful, message in case

pinpad operation fails.

Note: PinPad screen will not receive individual widget event though.

9.6 — Refresh Screen
Refreshes the screen on ePad. Normally used to clear signatures.
Input Message

{"command": 5, "inking": false, "inkRegionx": 0, "inkRegiony": 0, "inkRegionWidth": 0,
"inkRegionHeight": 0, "widgetLayout": "" }

Parameter Description

Command Number identifying the command. 5 for screen refresh
Inking False

inkRegionx 0

inkRegiony 0

inkRegionWidth 0

inkRegionHeight 0

widgetLayout Empty String

30

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

Output Message

{"command":5,"status":false,"message":"Failed to refresh the screen"}

Parameter Description

Command Number identifying the command. 5 for screen refresh.

Status True if refresh is successful, false otherwise.

Message Empty in case refresh is successfully executed, message in case refresh
fails.

9.7 — Signature Event Polling (Firefox Only)

All the signature points scribbled on the device should be polled from the native library.
Polling should be started right after the signature capture screen is created on the
screen.

SignatureEvent polling function should be called at repeated intervals to query the
signature data. Refer to the sample extension for reference implementation of the
polling.

Input: None
Return Value: Signature point data as a comma separated values. Below is the format

X,Y,Pressure, TimeStamp

Parameter Description

X Point x as number
Y Point y as number
Pressure Pressure as number
TimeStamp TimeStamp as long

31

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

9.8 — Widget Event Polling (Firefox Only)

The widget events should be polled from the native library. Polling should be started
right after the signature capture screen is created on the device screen.

WidgetEvent polling function should be called at repeated intervals to query the
signature data. Refer to the sample extension for reference implementation of the
polling.

Input: None
Return Value: Widget details as a comma separated values. Below is the format

Widgetid,widgetype,widgeteventcode

Parameter Description

Widgetid ID of the widget as a number (same as specified in the widget
layout XML while creating the screen).

Widgettype Widgettype number (button, radio button, check box etc.)

Value — Member Name — Description

1 — Text — Text Widget

2 — Button — Push Button Widget

3 — Checkbox — Checkbox Widget

4 — Radiobutton — Radio Button Widget

Widgeteventcode Reported widget event code as a number

Value — Member Name — Description

1 - CREATE_SUCCEED - The widget has been created.
2 — DELETE_DONE — The widget has been deleted.

3 — CHECKED — The widget has been checked (checkbox, radio
button).

4 — UNCHECKED - The widget has been unchecked
(checkbox, radio button).

5 — CLICKED - The button has been clicked.

8 — ENABLED - The widget has been enabled.

9 — DISABLED — The widget has been disabled.

10 — SHOW — The widget has been displayed.

11 — HIDE - The widget has been hidden.

12 — TEXT_DONE - The widget text has been changed.
150 — INVALID_ID — The received widget ID is invalid.
151 — INVALID_TYPE - Invalid widget type

152 — INVALID REQUEST - Invalid request (for example,
check/uncheck text widget)

154 — CREATE_FAILED - Failed to create widget

32

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

9.9 — Signature Event (Chrome Only)

All the signature points scribbled on the device are reported back as an output
message. Here is the format of the message.

No input message, signature event data is sent as an output message.

Output Message
{"command":101," xAxis": 100,"yAxis":100, "pressure ":10000, "timeStamp ":111111111 }

Parameter Description

Command Number identifying the command. 101 for signature event
XAXiS Point x as number

yAXis Point y as number

Pressure Pressure as number

Timestamp Timestamp as long.

9.10 — Widget Event (Chrome Only)

Widget events are reported as output message.
No input message, event data is sent as an output message.
Output Message

{"command":102," widgetID":1," widgetType":2, "eventCode":1 }

Parameter Description

Command Number identifying the command. 102 for widget event

Widgetid Event source widget ID as number

Widgettype Type of widget as number (button, radio button or check
box) etc.

Eventcode Event type as number (widget created, deleted, clicked or

status changed) etc.

Detail description for widgettype and EventCode see section 9.8

33

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

10.0 — Signature Drawing

The signature points reported from the device can be drawn on an HTML 5 Canvas
object. Refer to the sample extension for drawing the signature points and scaling of the
signature.

11.0 — Instructions to Run Sample Application

Before running the sample web page from the SDK/Sample folder one has to install the
Chrome Native Messaging Host and Chrome Extension for the Chrome browser and the
Firefox Extension for Firefox Follow the quick instructions to install these.

11.1 - Chrome Extension Installation and Configuration

Windows and Linux

1. Open the Chrome browser, type and navigate to the URL chrome://extensions/ or
click “Settings - Extensions”.

2. Click on LoadUnpackedExtension and choose Extension folder (<SDK
location>\Sample\ChromeExtension). Confirm the installation by clicking on the
OK button in browse dialog.

3. Confirm and accept the permission dialog displayed.

4. Make a note of the extension ID displayed in the extension window.

34

11.2 -

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

Chrome Native Host Installation and Configuration

Windows

1.

Linux

=

Navigate to the Sample/SDK/Chrome-NativeMessagingHost/Windows/X86 or
Sample/SDK/Chrome-NativeMessagingHost/Windows/X64 folder of the SDK
based on whether the Chrome is 32 bit or 64 bit

Edit the manifest.json file in any text editor (<SDK location>\SDK\Chrome-
NativeMessagingHost \Windows/X86 or X64) and update the Path attribute value
pointing to the physical path of the Chrome.ePad-visionSDK.exe file (same as
this manifest file <SDK location>\SDK \ Chrome-NativeMessagingHost \
Windows\ Chrome.ePad-visionSDK.exe). Please make sure to enter '\\' -- double
back slash as folder and file separator. As the manifest and executable are in the
same locationthen there is no need to modify this entry.

Update the chrome-extension value with the ID captured in step 4 of the
Extension installation. \\extension-1D\

Open Registry Editor (regedit.exe) to install the native messaging host with
Chrome. Navigate to the following key
HKEY_LOCAL_MACHINE\SOFTWARE\Google\Chrome\ (create the keys, if any
of them are missing).

For 64 bit machines running 32 bit Chrome these should be under
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Google\Chrome (if any
of these are missing, you can create these keys).

Create a new key named 'NativeMessagingHosts'.

Again, create a new key named com.topaz.epadvision.win

In the default value enter the name of the manifest.json file of the Native
Messaging host (typically <SDK location>\SDK \ Chrome-NativeMessagingHost
\Windows\X86 or X64\manifest.json)

Navigate to the /etc/opt/chrome/native-messaging-hosts folder of the system.
Edit the com.topaz.epadvision.win.json file in any text editor and update the Path
attribute value pointing to the physical path of the ePadvisionNMHost.exe file
(same as this com.topaz.epadvision.win.json file <SDK location>/SDK/Chrome-
NativeMessagingHost/ Linux/ePadvisionNMHost.exe).

Update the chrome-extension value with the ID captured in step 4 of the
Extension installation. \\extension-ID\

35

ePadLink

ePad-vision SDK for Chrome & Firefox Integration Guide

11.3 - Firefox Extension Installation

Windows and Linux

e Open the Mozilla Firefox browser and navigate to Tools > Add-ons > Extension
tab.

e Click on “Tools for all add-ons” and select “install Add-on from file...” option.

e Browse to FirefoxExtension.zip file (<SDK location>\Sample\FirefoxExtension)
and click on Install Now button.

e After installation, restart the browser.

11.4 — Running Web Page Sample

Navigate to the <SDK location>\Sample folder and open the main.html page, then press

the Start button to run the program.

11.5 - Sample Source Code

Source code for the Sample Chrome Extension, sample Firefox extension, and sample

web page are located in the <SDK Location>\Sample folder.

36

